An Error Model for High-Time Resolution Satellite Precipitation Products

Viviana Maggioni, Robert F. Adler, Mathew R. P. Sapiano, George J. Huffman, Yudong Tian

ESSIC/University of Maryland NASA Goddard Space Flight Center

The rationale

- Satellite precipitation estimates have increased in resolution and quality in the past years, but they are not perfect yet!
- Error estimates are of crucial importance, allowing inferences about the <u>reliability</u> of satellite products and their <u>operational application</u>:
 - hydrological models
 - land data assimilation systems
 - water management policy

The objective

The goal is to develop a <u>practical method</u> to provide error estimates and test them where high quality comparison data are available.

The user

The Regular
User is more
inclined to have
the error as one
single estimate

The Expert User is interested in the distribution of the error

Provide a mean (or median) value of the error Provide representative percentiles (25th, 50th, 95th)

Reference (y): CPC Unified Gauge Analysis

Satellite (x): TMPA 3B42-V7

Resolution: 25km/, 1 day

The error components

PUSH: Precipitation Uncertainty for Satellite Hydrology

Model output: probability distributions of estimated rainfall (ŷ)

Calibration over OK

Results over CONUS

Probability distributions

Normalized differences = (Estimated - Observed)/Observed

The error estimate

Results over CONUS, using parameters calibrated over OK

Error Maps: 24 October 2004

Error
$$(\varepsilon) = |S - R|$$

- Preliminary results are promising as the estimated distributions are shown:
 - to reproduce the probability density functions of the actual rainfall in terms of shape and magnitude
 - to reproduce the error spatial pattern
- Expansions of this work will look at:
 - different satellite rainfall products
 - real-time product (biased)
 - higher time resolutions (i.e., 3-hrs)
- This framework will be parameterized (by surface, convective regime, season etc.) in order to be applicable everywhere.